Original Article

Interaction of Beef-Heart Mitochondrial F₁-ATPase with Immobilized ATP in the Presence of Dimethylsulfoxide

Seelochan Beharry¹ and Philip D. Bragg¹

Received April 21, 1991, accepted November 6, 1991

Dimethylsulfoxide [Me₂SO, 30% (v/v)] promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F_1 -ATPase. The effects of this solvent on the interaction of beef-heart mitochondrial F_1 with the immobilized ATP of Agarose-hexane-ATP were studied. In the presence of Me₂SO, F_1 bound less readily to the immobilized ATP, but once bound was more difficult to elute with exogenous ATP. This suggests that not only was the binding affinity for adenine nucleotide at the first binding site affected but that adenine nucleotide binding affinity at the second and/or third sites, which interact cooperatively with the first site to release bound nucleotide, was also affected. A reduction in the binding of [³H]ADP to these sites was shown. A change in the conformation of F_1 in 30% (v/v) Me₂SO was demonstrated by crosslinking and by the increased resistance of the enzyme to cold denaturation.

KEY WORDS: F1-ATPase; adenine nucleotide binding; immobilized ATP; dimethylsulfoxide.

INTRODUCTION

In oxidative phosphorylation in mitochondria, the F_1F_0 -ATP synthase complex synthesizes ATP from ADP and inorganic phosphate, coupled with proton influx across the inner membrane. F_1 ,² when separated from F_0 , is a soluble enzyme complex which possesses ATPase activity, i.e., is able to hydrolyze ATP to ADP and inorganic phosphate. However, it can be induced to synthesize ATP from ADP and phosphate in the presence of 30% (v/v) Me₂SO without an energy gradient (Sakamoto and Tonomura, 1983; Yoshida, 1983; Sakamoto, 1984a,b; Cross *et al.*, 1984; Gomez-Puyou *et al.*, 1986; Kandpal *et al.*, 1987; Beharry and Bragg, 1991). It has been suggested that Me₂SO creates an environment which simulates the conditions of the mitochondrial matrix (Gomez-Puyou *et al.*, 1986). Thus, the Me_2SO-F_1 system is of considerable interest since it provides a simple system whereby some aspects of the mechanism of oxidative phosphorylation may be studied.

De Meis and coworkers (De Meis, 1984, 1989; De Meis *et al.*, 1988) have studied the potential role of solvent in affecting the solvation of phosphate and adenine nucleotide and their partitioning into a catalytic site which is suggested to undergo hydrophilichydrophobic transitions during catalysis. Enhanced binding of phosphate to F_1 in Me₂SO has been shown by Sakamoto (1984b) and by Kandpal *et al.* (1987). In addition, Me₂SO affects the adenine-nucleotide binding properties of mitochondrial F_1 (Beharry and Bragg, 1991).

In the present study, we have investigated the interaction of beef-heart mitochondrial F_1 -ATPase with immobilized ATP in Me₂SO. It was found that in the presence of Me₂SO, F_1 binds less readily to immobilized ATP but, once bound, was more difficult to release by exogenous ATP. Decreased ADP binding at two sites on the F_1 was observed. It is proposed

¹Department of Biochemistry, University of British Columbia, 2146 Health Sciences Mall, Vancouver, B.C., Canada V6T 1Z3.

²Abbreviations: Me₂SO, dimethylsulfoxide; F_1 , soluble ATPase from the mitochondrial ATP synthase complex; PAGE, polyacrylamide gel electrophoresis; DTNB, 5,5'-dithiobis(2-nitroben-zoic acid).

that this decrease in binding prevents the cooperative interaction between the sites which is responsible for the release of substrate from a catalytic site in the binding-change mechanism (Boyer 1979, 1987, 1989; Penefsky and Cross, 1991). An altered conformation of the F_1 in Me₂SO was shown by chemical crosslinking and by the increased resistance of the enzyme to cold denaturation.

MATERIALS AND METHODS

Materials

The following chemicals and enzymes were obtained from the companies indicated. Sigma: adenosine 5'-triphosphate (disodium salt), adenosine 5'-diphosphate (disodium salt), β -nicotinamide adenine dinucleotide (reduced form), L-lactate dehydrogenase (Type XI, from rabbit muscle), pyruvate kinase (Type III, from rabbit muscle; BDH Chemicals: dimethyl sulfoxide; Fisher Scientific Co.: 1,10-phenanthroline; Pharmacia P-L Biochemicals: DEAE-Sephandex G-50-120 (fine), Sephadex G-50-80, Agarose-hexane-ATP (Type 2); Amersham: [2-³H]-adenosine 5'-diphosphate (ammonium salt), Aqueous Counting Scintillant, ACS; Pierce Chemical Company: 3,3'-dithiobis-(succinimidyl propionate). Aurovertin was a generous gift from Prof. R. B. Beechey.

Preparation of Beef-Heart Mitochondrial F₁-ATPase and Assays

The preparation of beef-heart mitochondrial adenosine triphosphatase, coupled assays of F_1 -ATPase activity, and determination of protein concentration were carried out as described previously (Beharry *et al.*, 1990; Beharry and Gresser, 1987).

Gel Electrophoresis

SDS/PAGE was performed and proteins stained as previously described (Beharry *et al.*, 1990).

Preparation of Agarose-hexane-ATP Columns

The Agarose-hexane-ATP (AGATP Type 2, ATP linked through N6 of its adenine ring) columns were prepared and the experiments performed as described before (Beharry *et al*, 1990).

Aurovertin Fluorescence

The aurovertin fluorescence experiments were

performed as described by Bragg and Hou (1987) except that the buffer was 90 mM Tris-acetate, pH 7.5, and 47 μ M phosphate, with and without 30% (v/v) Me₂SO.

Binding Studies

The nucleotide-binding experiments were performed as described by Cross and Nalin (1982) and Nalin and Cross (1982). F_1 was incubated with nucleotide in a buffer of 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 47 μ M phosphate, with and without 30% (v/v) Me₂SO. All experiments were performed at room temperature (22–23°C).

Crosslinking Studies

Crosslinking by 3,3'-dithiobis(succinimidyl propionate) and cupric 1,10-phenanthrolinate was carried out as described by Bragg and Hou (1980).

RESULTS

Nucleotide Binding

Beef-heart mitochondrial F_1 prepared in our laboratory contains three molecules of tightly bound adenine nucleotide per molecule of enzyme (Beharry and Bragg, 1991). One of these molecules can be readily removed by high concentrations of GTP and is therefore classed as an exchangeable, and presumably, catalytic site (Kironde and Cross, 1986, 1987). The other two nonexchangeable molecules of adenine nucleotide are at noncatalytic sites. In addition to the sites containing bound nucleotide, there are three sites which can be filled by the nonhydrolyzable adenine nucleotide analog adenylyl-5'-imidodiphosphate. The affinity of F_1 for the analog was lowered at two of the sites when the enzyme was in 30% (v/v) Me₂SO (Beharry and Bragg, 1991).

The reduced affinity shown by F_1 for the adenine nucleotide analog was confirmed using ADP, the natural substrate of the synthesis reaction (Fig. 1). Approximately 4 mol [³H]ADP/F₁ and 2 mol [³H]ADP/F₁ were bound in the absence and presence of 30% (v/v) Me₂SO, respectively. Presumably, in the aqueous system, the [³H]ADP filled the three vacant nucleotide binding sites and displaced the bound nucleotide from the exchangeable site. In Me₂SO, there is a reduced affinity for ADP at two of the binding sites.

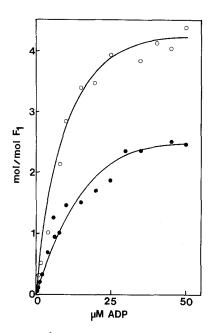
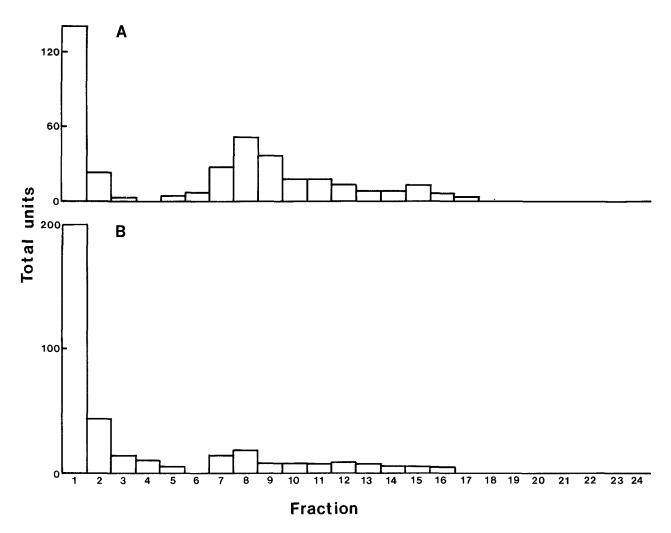


Fig. 1 Binding of $[{}^{3}H]ADP$ to F_{1} in the absence (O) and presence (\bullet) of 30% (v/v) Me₂SO. F_{1} (2.5 μ M upper curve, 2.3 μ M lower curve); was incubated with ADP for 60 min in a buffer with and without Me₂SO. Samples were freed of unbound ADP using centrifuged columns of Sephadex G-50 equilibrated with and without Me₂SO. Bound nucleotides were determined as described in Materials and Methods. The extent of binding expressed as mol ADP bound per mol F_{1} is plotted versus the concentration of ADP in the incubation medium.

Binding of F₁ to Agarose-hexane-ATP

We have recently shown (Beharry et al., 1990) that beef-heart mitochondrial F_1 will bind to the immobilized ATP moiety of Agarose-hexane-ATP columns, and that the bound F_1 can be eluted with ATP. The immobilized ATP is hydrolyzed to ADP and phosphate, and elution of F₁ probably involves cooperative interactions between catalytic sites on the enzyme. The interaction of F_1 with columns of Agarose-hexane-ATP was investigated in the presence and absence of 30% (v/v) Me₂SO (Fig. 2 and Table I). The binding and elution profiles of F_1 were similar in both systems. Less F₁ was bound in Me₂SO buffer than in the completely aqueous buffer (Table I) (NB: enzyme activity and protein concentration, as shown by SDS-polyacrylamide gel electrophoresis, closely paralleled one another). This is in agreement with the reduced affinity for adenine nucleotides shown by F_1 in Me₂SO buffers (Beharry and Bragg, 1991) (Fig. 1). However, only 42% of the bound activity was eluted by ATP in the Me₂SO system compared with 71% when the organic solvent was absent (Table I). The reduced ability of ATP to release bound F_1 may be due to the decreased ability of bound F_1 to bind a second and/or third ATP molecule in the Me₂SO system. Alternatively, the cooperativity between adenine nucleotide-binding sites may be affected by the presence of Me₂SO.

Consistent with these interpretations were the results from a second type of experiment. F_1 was allowed to bind to immobilized ATP in aqueous buffer. The columns were then equilibrated with buffer, with and without 30% (v/v) Me₂SO, and eluted with ATP in the corresponding buffer (Fig. 3). Phosphate was not present in the buffers. As before, half as much activity was eluted with the ATP/Me₂SO buffer as compared with the ATP/aqueous buffer. It is thus apparent that whether F_1 is exposed to Me₂SO before or after binding to immobilized ATP, there is a reduced affinity for incoming ATP and/or a decrease in cooperativity between binding sites. In an attempt to distinguish between these alternatives, the fluorescence behavior of F_1 with aurovertin D was examined.


Aurovertin Fluorescence

Aurovertin D binds to F_1 to form a complex the fluorescence of which is affected by adenine nucleotides. Vazquez-Laslop *et al.* (1989) have shown that the fluorescence behavior of the aurovertin D· F_1 complex on addition of ATP reflects the hydrolysis of the ATP at a single catalytic site. In the presence of aurovertin D cooperative mechanisms are blocked (Lunardi *et al.*, 1986).

Addition of aurovertin D to F_1 in buffer resulted in an increase in fluorescence intensity as the aurovertin $D \cdot F_1$ complex was formed (Fig. 4). The increase was less in the Me₂SO medium. MgCl₂ (0.25 mM) caused partial quenching of fluorescence. An increase in fluorescence intensity was then produced by the addition of $1.25 \,\mu\text{M}$ ATP. The rate at which the fluorescence increased was markedly slower in the Me₂SO system than in the entirely aqueous system. The addition of a high level (2 mM) of ATP resulted in the quenching of fluorescence, as has been observed by others (Pougeois et al., 1979). These experiments show that ATP-induced effects occurring at a single catalytic site are influenced by the presence of Me₂SO. Therefore, the results described in the previous sections are consistent with there being a major effect of Me₂SO on the binding of adenine nucleotide.

Crosslinking

The Me₂SO-mediated changes should be reflected

Fig. 2. Elution by ATP of F_1 ATPase from Agarose-hexane-ATP. A 1.0-ml portion of F_1 , 0.75 mg of protein, containing 500 units of activity, was applied to a 1-ml Agarose-hexane-ATP (Type 2) column. The fractions were eluted as follows (see Materials and Methods): 1–5, buffer washes, with centrifugation; 6, buffer containing 1.0 mM AMP, with centrifugation; 7–14, buffer containing 10 mM ATP, without centrifugation; 15–16, as for 7–14, but with centrifugation; 17–20, buffer containing 2 M urea, without centrifugation, and 21–24, buffer containing 2 M guanidine HC1, without centrifugation. The buffer used was 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 47 μ M phosphate in the absence (A) and presence (B) of 30% (v/v) Me₂SO. F_1 was applied and eluted in the same buffer except where the mentioned additions were made. A unit of activity is the amount of enzyme causing a change in the absorbance at 340 nm of 1/min in the coupled assay.

in an altered conformation of the enzyme. This was verified by crosslinking studies.

Treatment of the enzyme with cupric 1,10phenanthrolinate in an entirely aqueous medium generated several crosslinked products, of which the two most prominent are designated 1 and 2 in Fig. 5A. The disulfide linkages formed by the crosslinker were cleaved by 2-mercaptoethanol, and the products of cleavage were recognized by sodium dodecyl sulfate gel electrophoresis in the second dimension. Product 1 yielded α and γ subunits; product 2 gave the γ subunit only. Higher molecular weight products containing α and/or γ subunits were also present (Fig. 5A). By contrast, little crosslinking was observed when the reaction was performed in 30% (v/v) Me₂SO (Fig. 5B). Presumably, the alignment between sulfhydryl groups on the α and γ subunits, which enables a disulfide crosslinkage to be formed in aqueous medium, is altered in 30% (v/v) Me₂SO. To determine if the lack of crosslinking of F₁ by cupric 1,10-phenanthrolinate in Me₂SO was due to the inability of the reagent to oxidize sulfhydryl groups in the organic solvent, we examined the effect of cupric 1,10-phenanthrolinate pretreatment on the reaction of cysteine with DTNB

Table I. Elution of F_1 from agarose-Hexane-ATP (Type 2) in Buffer with and Without 30% (v/v) Me₂SO^a

	Aqueous buffer	$30\% (v/v) Me_2SO$ buffer
 Total activity applied Activity not bound, 	500 units	500 units
Fractions 1-5	230 units	305 units
Activity bound 3. Activity eluted with	270 units	195 units
ATP buffer	190 units	82 units
% Recovery	71%	42%

^aData taken from Fig. 2.

(Beharry and Bragg, 1989). The cupric 1,10-phenanthrolinate caused rapid loss of reaction of cysteine with DTNB, both in the presence and absence of 30% (v/v) Me₂SO, due to the oxidation of the sulfhydryl group of cysteine. Thus, the lack of crosslinking of F₁ in Me₂SO is unlikely to be due to the inability of the reagent to oxidize the sulfhydryl groups to form the crosslink. The amino-reactive crosslinking agent 3,3'dithiobis(succinimidyl propionate), which requires less critical alignment between groups for crosslinking, gave a large number of different crosslinked products of the subunits of F₁ (results not shown). There was no was no difference between entirely aqueous and 30% (v/v) Me₂SO media in the nature and amount of

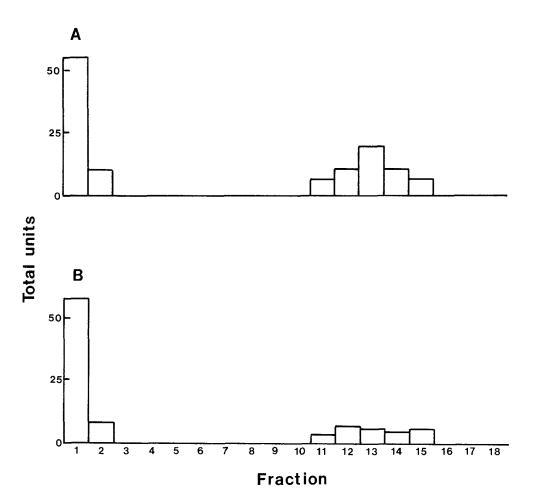


Fig. 3. Elution by ATP and F_1 ATPase from Agarose-hexane-ATP after Me₂SO washes. A 1.0-ml portion of F_1 , 0.71 mg of protein, containing 200 units of activity, was applied to a 1-ml Agarose-hexane-ATP (Type 2) column. The fractions were eluted as follows (see Materials and Methods): 1–5, buffer washes; 6–9, buffer without and with 30% (v/v) MeSO₄; 10, buffer with 1 mM AMP \pm 30% (v/v) Me₂SO; 11–14, buffer with 10 mM ATP \pm 30% (v/v) Me₂SO; 15–18, buffer with 2 M guanidine hydrochloride. The buffer used was 90 mM Tris-acetate, pH 7.5, and 1.6 mM MgSO₄ with (B) and without (A) 30% Me₂SO (v/v) as indicated. A unit of activity is the amount of enzyme causing a change in absorbance at 340 nm of 1/min in the coupled assay.

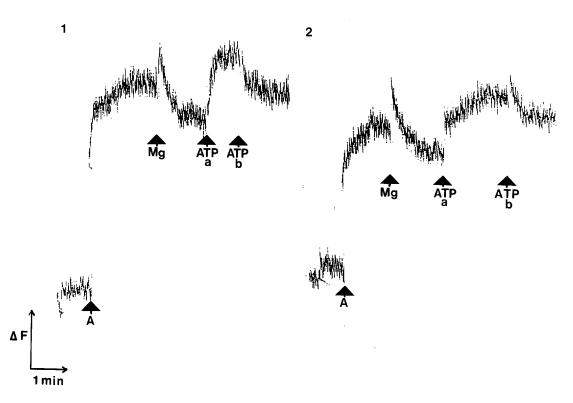


Fig. 4 Effect of ATP and Me₂SO on the fluorescence intensity of the aurovertin D-F₁ ATPase complex. Fluorescence measurements were made as described in Materials and Methods using 0.1 mg F_1 protein/ml buffer with (2) and without (1) 30% (v/v) Me₂SO. The volume of buffer was 2 ml. A, 3 μ l aurovertin D at 1.25 mM; Mg, 0.5μ mol MgSO₄; ATP a, 25 nmol ATP; ATP b, 4 μ mol ATP added.

crosslinked products formed by this latter crosslinker, thus indicating that in contrast to cupric 1,10phenanthrolinate, it was not able to detect the subtle changes in conformation induced by Me_2SO which were evidenced by altered nucleotide-binding properties.

Effect of Me₂SO on the Stability of F₁

 F_1 , once detached from F_0 , is a very cold-labile enzyme, as seen in Fig. 6 and in early studies of the enzyme (Pullman *et al.*, 1960). Cold denaturation was completely prevented by the presence of 30% (v/v) Me₂SO. The enzyme showed no loss of activity over the time course of the experiment. This suggests that in the presence of Me₂SO, the F_1 may be in a form similar to that in the cold-stable F_1F_0 complex.

DISCUSSION

The experiments described in this paper confirm and extend our previous proposals (Beharry and Bragg, 1989, 1991) that the presence of Me₂SO affects the conformation of beef-heart mitochondrial F_1 and the nucleotide-binding properties of the enzyme.

The altered conformation of the enzyme was shown by an increased resistance to cold denaturation and by an alteration in the ability to crosslink subunits with cupric 1,10-phenanthrolinate. This agent induced the formation of a crosslink between one of the two sulfhydryl groups on an α subunit (cysteine-201 or cysteine-251) and the sulfhydryl group of cysteine-78 of the γ subunit. The conformational change induced by Me₂SO resulted in the loss of the alignment between the two cysteine residues which permitted crosslinking. These results are consistent with our previous study of sulfhydryl modification of F_1 which showed that sulfhydryl groups on the α , γ , and ε (cysteine-18) subunits were in close proximity such that only one could be modified by 5,5'-dithiobis(2-nitrobenzoic acid) in the native enzyme (Beharry and Bragg, 1989). However, 30% Me₂SO (in the presence of ATP) resulted in a conformational change so that the cysteine residues on the α and ε subunits could be simultaneously modified by this reagent. These two sets of data lead to a model in which one of the three α subunits and the γ and ε subunits interface in the region of their cysteine residues, and it is this region which relaxes in the presence of 30% (v/v) Me₂SO.

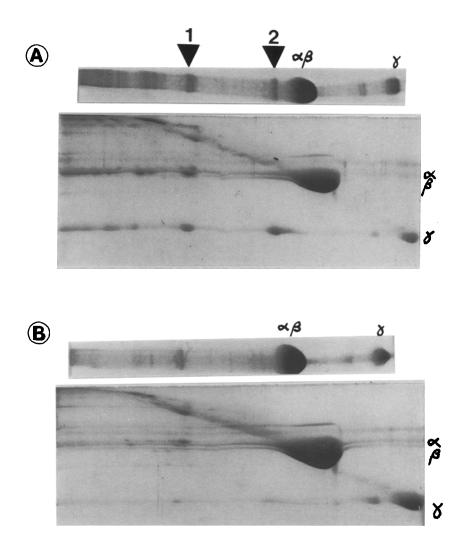


Fig. 5 Crosslinking of F_1 by cupric, 1,10-phenanthrolinate in the absence (A) and presence (B) of 30% (v/v) Me₂SO. Crosslinking was carried out as described by Bragg and Hou (1980), and the products resolved by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. The direction of migration is from left to right in the first dimension and from top to bottom in the second dimension. A Coomassie blue-stained duplicate strip of the first-dimension gel is placed above the two-dimensional gel for identification of crosslinked products. The subunits arising from the cleavage of these products with 2-mercaptoethanol are seen in the two-dimensional gel directly below the labelled bands. The positions of migration of the subunits of F_1 are indicated.

The alteration in the conformation of F_1 is associated with, but not necessarily the cause of, a change in the nucleotide-binding properties of F_1 . Less [³H]ADP binds to F_1 in 30% (v/v) Me₂SO. The decrease from 4 mol/mol F_1 to 2 mol/mol F_1 in the amount of labeled ADP which can bind suggests that two potential adenine nucleotide-binding sites must be unoccupied

in the presence of Me_2SO . A reduction in the binding affinity at these two sites could account for the fact that ATP formed by F_1 in Me_2SO is not released from the enzyme even in the presence of excess ADP and phosphate (Sakamoto and Tonomura, 1983), and for the greater difficulty of releasing F_1 bound to a column of Agarose-hexane-ATP in the presence of Me_2SO .

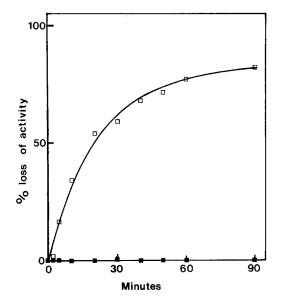


Fig. 6 Cold denaturation of F_1 in the presence (\bullet) and absence (\bigcirc) of 30% (v/v) Me₂SO. The enzyme (0.94 mg protein/ml) was incubated at 0°C. At intervals, samples were removed for assay of ATPase activity. The initial activities without and with Me₂SO were 96 and 48 μ mol ATP hydrolyzed/min/mg protein.

Both situations require the release of the ATP by cooperative interactions involving the binding of adenine nucleotide at a second and/or third site (Boyer, 1979, 1987, 1989; Penefsky and Cross, 1991). A reduction of binding affinity for adenine nucleotide at the second or third site, as shown above, would affect the release mechanism.

That the binding affinity for ATP at a catalytic site is affected is supported by our results with the aurovertin $D \cdot F_1$ complex. The presence of Me₂SO decreases the rate of increase of fluorescence seen on addition of ATP. The work of Vazquez-Laslop *et al.* (1989) and of Lunardi *et al.* (1986) suggests that the fluorescence increase is due to the hydrolysis of ATP at a *single* catalytic site and is independent of cooperative interactions. A reduced binding affinity for ATP in Me₂SO could account for our data.

CONCLUSION

The results presented here are consistent with a reduction in adenine nucleotide binding affinity at all exchangeable sites on F_1 . The decrease in adenine nucleotide binding at the sites required to release product from a catalytic site could account for the stronger retention of F_1 on columns of Agarose-hexane-ATP and for the lack of release of product ATP formed by F_1 from ADP and phosphate in

Me₂SO. These data do not exclude the possibility that the altered conformation of F_1 in 30% (v/v) Me₂SO may also be unfavorable for cooperative interactions between adenine nucleotide binding sites.

ACKNOWLEDGMENTS

We are grateful to Dr. Michael Gresser (formerly of Simon Fraser University) for providing facilities for the isolation of beef-heart mitochondria. We thank Prof. R. B. Beechey for his generous gift of aurovertin D and Cynthia Hou for carrying out the crosslinking experiments. This work was supported by a grant from the Medical Research Council of Canada.

REFERENCES

- Beharry, S., and Bragg, P. D. (1989), FEBS Lett. 253, 276-280.
- Beharry, S., and Bragg, P. D. (1991). Biochem. Cell Biol. 69, 291–296.
- Beharry, S., and Gresser, M. J. (1987). J. Biol. Chem. 262, 10630-10637.
- Beharry, S., Gresser, M. J., and Bragg, P. D. (1990). Biochem. J. 266, 835-841.
- Boyer, P. D. (1979). In *Membrane Bioenergetics* (Lee, C. P., Schatz, G., and Ernster, L., eds.), Addison-Wesley, Reading, Pennsylvania, pp. 461–479.
- Boyer, P. D. (1987). Biochemistry 26, 8503-8507.
- Boyer, P. D. (1989). FASEB J. 3, 2164-2178.
- Bragg, P. D., and Hou, C. (1987). Biochim. Biophys. Acta 894, 127-137.
- Bragg, P. D., and Hou, C. (1980). Eur. J. Biochem. 106, 495-505. Cross, R. L., and Nalin, C. M. (1982). J. Biol. Chem. 257, 2874-
- 2881.
- Cross, R. L., Cunningham, D., and Tamura, J. K. (1984). Curr. Top. Cell. Regul. 24, 335-344.
- De Meis, L. (1984). J. Biol. Chem. 259, 6090-6097.
- De Meis, L. (1989). Biochim. Biophys. Acta 973, 333-349.
- De Meis, L., Tuena de Gomez-Puyou, M., and Gomez-Puyou, A. (1988). Eur. J. Biochem. 171, 343-349.
- Gomez-Puyou, A., Tuena de Gomez-Puyou, M., and De Meis, L. (1986). Eur. J. Biochem. 159, 133–140.
- Kandpal, R. P., Stempel, K. E., and Boyer, P. D. (1987). Biochemistry 26, 1512–1517.
- Kironde, F. A. S., and Cross, R. L. (1986). J. Biol. Chem. 261, 12544–12549.
- Kironde, F. A. S., and Cross, R. L. (1987). J. Biol. Chem. 262, 3488–3495.
- Lunardi, J., Klein, G., and Vignais, P. V. (1986). J. Biol. Chem. 261, 5350-5354.
- Nalin, C. M., and Cross, R. L. (1982). J. Biol. Chem. 257, 8055– 8060.
- Penefsky, H. S., and Cross, R. L. (1991). Adv. Enzymol. Relat. Areas Mol. Biol. 64, 173–214.
- Pougeois, R., Satre, M., and Vignais, P. V. (1979). Biochemistry 18, 1408–1413.
- Pullman, M. E., Penefsky, H. S., Datta, A., and Racker, E. (1960). J. Biol. Chem. 235, 3322–3329.
- Sakamoto, J. (1984a). J. Biochem. (Tokyo) 96, 475-481.
- Sakamoto, J. (1984b). J. Biochem. (Tokyo) 96, 483-487.
- Sakamoto, J., and Tonumura, Y. (1983). J. Biochem. (Tokyo) 93, 1601-1614.
- Vazquez-Laslop, N., Rimirez, J., and Dreyfus, G. (1989). J. Biol. Chem. 264, 17064-17068.
- Yoshida, M. (1983). Biochem. Biophys. Res. Commun. 114, 907-912.